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Oblique wave groups in deep water 

By P. J. BRYANT 
Mathematics Department, University of Canterbury, Christchurch, New Zealand 

(Received 17 November 1982 and in revised form 6 April 1984) 

Oblique wave groups consist of waves whose straight parallel lines of constant phase 
are oblique to the straight parallel lines of constant group phase. Numerical solutions 
for periodic oblique wave groups with envelopes of permanent shape are calculated 
from the equations for irrotational three-dimensional deep-water motion with 
nonlinear upper free-surface conditions. Two distinct families of periodic wave groups 
are found, one in which the waves in each group are in phase with those in all other 
groups, and the other in which there is a phase difference of 7c between the waves 
in consecutive groups. It is shown that some analytical solutions for oblique wave 
groups calculated from the nonlinear Schrodinger equation are in error because they 
ignore the resonant forcing of certain harmonics in two dimensions. Particular 
attention is given to  oblique wave groups whose group-to-wave angle is in the 
neighbourhood of the critical angle tan-'2/$, corresponding to waves on the boundary 
wedge of the Kelvin ship-wave pattern. 

1. Introduction 
When waves are generated over a range of horizontal directions, i t  must be 

expected that the lines of constant wave phase in a locally sinusoidal group of waves 
are oblique to the lines of constant phase of the envelope enclosing the group. One 
well-known example is that  of the waves along the boundary wedge of the Kelvin 
ship-wave pattern (Lighthill 1978, figures 70, 71) .  Another example results from the 
instability of finite-amplitude deep-water gravity waves to disturbances in two 
horizontal dimensions. An oblique unstable modulation of a length large compared 
with the wavelength causes a regular wavetrain to grow into an oblique wave-group 
structure. Such oblique instabilities dominate parallel instabilities for moderate and 
large wave steepnesses (McLean et al. 1981). 

A simple description of a periodic oblique wave group is given by the superposition 
of two sinusoidal waves differing slightly in wavenumber components along one 
horizontal direction. Their water surface displacement may be represented by 

?(XI, x2, t )  = a cos {k1x1 + k,x, -wt> + a cos((k, + 6kl) X I  + k,X, - (w+ 6 w )  t }  (1.1 a) 

(1.1 6) = 2a cos {+6k1z1 -+swt> cos {(k, ++6kl) x1 + k,x,- (w +@a) t } ,  

where w = ( g ~ ) a ,  K = (k; + k$, and w is the frequency of waves in deep water. This 
superposition describes a slowly varying wavetrain propagating a t  angle 8 to the x1 
direction, where tan 0 = k, /k l  approximately, whose group envelope propagates in 
the x1 direction with a velocity approximately 
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FIGURE 1. ( a )  Two group lengths of the oblique wave group with parameters E = 0.05, k, = 10, 
0 = in, of the second family above the critical angle. Note the phase shift of n between the crest 
lines of consecutive groups. Horizontal contraction Ion. (b )  Envelope of the above groups. Minimum 
separation of upper and lower envelopes is 0.083 of maximum separation. ( c )  Corresponding 
envelope solution (sn form) of the nonlinear Schrodinger equation. 

A generalization of this description is 

r ( ~ ~ , ~ ~ , t )  = E a ( ~ , ) c o s ~ k , x , + ~ , x , - w t ~ ,  ( 1 . 3 )  
kl 

whose spectrum lies in a narrow waveband centred on wavenumber (k,,, k2) for fixed 
k2, and w is dependent on group amplitude as well as on k, and k,.  

An example of an oblique wave group structure for which 0 = in is sketched in 
figure l ( a ) .  The wavetrain propagates towards the top right of the figure with a 
velocity (g /K) : ,  while the group structure propagates from left to right with a velocity 
i ( g / K ) :  cos@. At the small value of the wave-slope parameter E = 0.05 in the figure, 
the main effect of the weak nonlinearity is to maintain the permanent envelope shape 
by balancing the linear dispersion. 

A simple representation of a one-dimensional wave-group structure is 

kx 
7 = Z ak cos- 

k ko 
( 1 . 4 ~ )  

= c k a,cos(?x+x), (1 .4b )  
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where the wavenumbers k take all integer values in a waveband centred on k,, and 
the amplitudes a k  rise to a maximum at or near k, (k, need not be an integer). The 
envelope of this group is 

k-k, x + x uk sin;.>'} k-k  

?lE={(f"kcos- k, ( k ko 
(1.5a) 

(1.56) 

The envelope has group length 2nk, and encloses a wavetrain of approximate 
wavelength 2n. An alternative wave-group structure is that for which the wavenumbers 
k in (1.4,1.5) take all odd integer values in a waveband centred on k,. The envelope 
described by (1.5) then has group length nk,, and from (1.4) encloses a wavetrain of 
approximate wavelength 2n. Each wavetrain satisfies 

7(x+2nkO) = ~ ( x ) ,  ( 1 . 6 ~ )  

and for the second family only, 

T(X+Xk,)  = -V(X). (1.6b) 

The wavetrains in each group of the first, family are in phase, but the wavetrains in 
consecutive groups of the second family are n out of phase. The two families are 
generalized in $5 to oblique wave-group structures in the horizontal plane with 
harmonic wavebands included. 

Hui & Hamilton (1979) calculated oblique wave-group solutions from the nonlinear 
Schrodinger equation in two horizontal dimensions. This equation, derived originally 
by Zakharov (1968), assumes that the spectrum of surface waves rises to a narrow 
central peak in two-dimensional wavenumber space. The wave frequencies are 
expanded in a Taylor series about the central wavenumber, with the leading terms 
of the series contributing the linear terms to the nonlinear Schrodinger equation. If 
resonances cause further significant peaks in the spectrum of water waves, the 
Taylor-series expansion is not valid, and the nonlinear Schrodinger equation fails as 
a model equation for the wave-group structure. It will be shown that resonances are 
either absent or insignificant for oblique wave groups whose group-to-wave angle is 
less than about tanp1 f, but that for greater angles, including the important critical 
angle tanp1 l/+, resonances can be significant even to the extent a t  some angles that 
they dominate the oblique wave group structure. 

The nonlinear Schrodinger equation has oblique wave-group solutions for which 
the envelope of the group passes through zero (Hui & Hamilton 1979, figures 2 and 
3). No numerical solutions of the full equations were found with envelope zeros. 
Solutions of the full equations corresponding to such Schrodinger-equation solutions 
have upper and lower envelope extrema where the Schrodinger-equation solutions 
have envelope zeros (figures 16, c). Further, it  was found that solutions of the second 
family corresponded to Schrodinger-equation solutions with envelope zeros, with the 
discontinuity in wave phase of n a t  an envelope zero replaced by a phase shift of x 
between the wavetrains in consecutive wave groups. 
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2. Oblique wave groups 

the surface of deep water is 
The set of equations governing gravity waves in inviscid irrotational motion on 

( 2 . 1 ~ )  

(2.1 b )  

The dimensional variables are the surface displacement q, the velocity potential 
(gl);a$, and lx,  l y ,  l z ,  ( l / g ) i t ,  where a is a measure of wave amplitude, 2n1 is a typical 
wavelength, and F = a / l  is a measure of wave steepness. The origin of coordinates 
lies in the mean water surface, with the z-axis vertically upwards. 

A non-dimensional description of a simple periodic oblique wave group with an 
envelope of permanent shape is, from ( 1 . 3 , i  .4), 

( 2 . 2 ~ )  
k I 

(.-it cos 8 )  cos 8+ x cos 8+ y sin 8 - ( 1  +a)  t , (2 .2  b )  
k I 

which describes a slowly varying wavetrain of typical wavelength 2x1 propagating 
at angle 8 to the x-direction, whose group envelope propagates with velocity 3 cos B(g1)i 
in the x-dircction. The dimensional wavenumber components in the x-direction are 
k / C ,  where 271L is the group length. The central wavenumber component in this 
direction is k,/L, such that 

L. cos 8 
k,  = ___ I ( 2 . 3 )  

is equal to or is near to  the number of wavelengthsin one group length in the x-direction 
for the first family or two group lengths for the second family (k, is identified with 
the central peak of the spectrum and is not required to be an integer, although k takes 
only integer values). The nonlinear amplitude dependence of the wavetrain is 
reflected in a non-dimensional frequency contribution a, an unknown function of e,  
k,  and 8. 

A complete representation of an oblique periodic wave group including harmonic 
wavebands centred on jk,, j = 0 , 1 , 2 ,  ... , where j = 1 denotes the dominant 
waveband, is given by 

y = E z ajkcoS { ____ ko (x-atcose,cosB+j(xcos8+ysin8-(l+a)t)  . 

\ ( 2 . 4 ~ )  

The bounds of the summations are determined numerically by trial and error so that 
the set of amplitudes ajk includes all those amplitudes greater in magnitude than some 
small prescribed value. Since 7 is chosen to have a zero mean and the argument is 
symmetric in k whenj  = 0, the lower bound k,(O) may be set equal to  1 without loss 
of generality. Other lower bounds k , ( j ) ,  j > 0, may be negative. The associated 
solution of Laplace's equation (2 .1  a )  is 

I J k,W k -jk, 
j=O k = k , ( j )  

\ 

(.-it cos 8)  cosO+j(x cos8+ysin 8- ( 1  +a)  t )  , 1 J k , ( i )  k - jko  4 = Z Z bjkeK/kZsin 

(2 .4b )  
i = O  k = k l ( j )  
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where 

It should be emphasized that (2.4a, b)  are only one particular description of 
periodic oblique wave groups, and are a generalization of the two families of wave 
groups modelled by (1.4-1.6). Further periodic wave-group solutions can be expected 
to exist with the greater degree of generality allowed by writing ( 2 . 4 ~ )  with both a 
set of amplitudes ajk and a set of phases Ojk not all zero. Equations (2.4a,b) are 
numerically complete in the sense that they include a complete set of wave 
components, greater in magnitude than some small prescribed value, which are 
generated by the nonlinear interactions described by (2.1 c ,  d) .  

When (2.4a, b )  are substituted into (2.1 c ,  d ) ,  with cjk denoting the cosine in ( 2 . 4 ~ )  
and sjk the sine in (2.46), the resulting expressions may be written as 

+;€ x KikbjketKjkas. i*)2 = 0, (2.5b) 

where eCKjkq = exp ( w j k  x p  xq  apgcpg) .  If the measure of amplitude a is taken to be the 
water-surface displacement q ( O , O ,  0) then 

H = z C a i k - l  = O .  ( 2 . 5 ~ )  

( i  k 

j k  

Equations (2.5a, b )  may be transformed numerically to 

F = Z x Fmnsmn = 0, G = C x Gmncmn = 0, (2.6a, b )  
m n  m n  

from which Fmn = G,, = 0 for all m,n.  (2.7) 

Equations (2.6) are obtained from (2.5) for given values of aik, bjk ( a l l j  and k) and 
a by evaluating F and G at a grid of points in space and time followed by fast Fourier 
transforms over the grid. The independent variables used for the grid are the 
multipliers o f j  and k in the phase functions defined by (2.4). This process, using 
truncated Fourier series, does not need perturbation expansions in E and makes no 
explicit assumptions about the magnitude of E .  

The Fourier coefficients Fmn, Gmn are nonlinear functions of ajk, bjk (all j and k) 
and a for given E ,  ko and 8. Equations (2.7) are solved numerically by Newton's 
method, which for F is given by 
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for all m, n. Each coefficient on the left of (2 .8)  is an (m, n) Fourier coefficient of a 
partial derivative of (2 .5a) ,  and is calculated numerically by the method described 
above for calculating Fmn, Gmn. The prime denotes the new value of each variable. 
All Fourier coefficients are evaluated a t  the old values of the variables. There is a 
similar set of equations derived from G and a single equation derived from H .  The 
complete set of linear equations is solved numerically for a j k  -a;,, bjk - bik (all j and 
k), a -a’, the new values of the variables are calculated, and the procedure is repeated 
until the differences are less than some small arbitrary number or in the 
examples following). This method is the same as that used previously for the 
calculation of cyclic waves in one horizontal dimension, those being waves for which 
the group length equals the wavelength (Bryant 1983). 

A useful feature of the numerical method is that the Fourier coefficients Fmn, G,, 
may be found for wavebands m and wavenumbers n outside those included in the 
calculation of ajk ,  bjk (all j  and k )  and a. These coefficients then show which wavebands 
and wavenumbers should be added to the calculation to improve the precision with 
which (2.6u, b )  are satisfied over the complete range of x, y and t. All calculations 
were performed in double precision on a Prime 750 computer, with subroutines 
adapted from the Harwell Subroutine Library. 

3. Nonlinear Schrodinger equation 

on deep water, with the same dimensional scaling as in $ 2 ,  is 
The nonlinear Schrodinger equation describing wave propagation in the x-direction 

i(A,++A,)-QA,,+~A,,-~€z IAI2A = 0, (3 .1)  

(3 .2)  

where the non-dimensional surface displacement is 

7 = Re {A(X, Y ,  t )  exp i(X- t ) } ,  

and A is a slowly varying function of X, Y ,  and t. Oblique wave-group solutions of 
the form described by (2.2) require the rotation of axes 

x = Xcos8- YsinB, 

y = XsinO+ YcosO, 

X = xcosB+ysinB, 

Y = -xsinO+ycosO, 

followed by substitution in (3 .1)  of 

A = R(x-$t cos -9) ePiat. 

( cos2 0 - 2 sin2 0 )  R - 8aR + 4e2R3 = 0, 

(3 .3)  

(3 .4)  

The function R is found to satisfy 

which is the equation whose analytical solutions are derived by Hui & Hamilton 
(1979, equation 16) .  

The dominant waveband of the surface displacement described by ( 2 . 4 ~ )  is 

= X cos (X- ( 1  + a) t )  - T sin (X - ( 1  + a) t )  ( 3 . 5 a )  

= R cos (X- (1 +a) t + 0). (3 .5b)  
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where S,  T, R, and 0 are functions of x-it cos 8, with S = R cos 0 and T = R sin 0. 
The oblique wave-group solutions of the nonlinear Schrodinger equation are recovered 
only if 0 is assumed to be a linear function of x-it cost9 (Hui & Hamilton 1979, 
equation 9). This is equivalent to assuming that the total wave phase X -  (1  +a) t + 0 
has no dependence on x-it cos6 for any given wavetrain, because the linear 
dependence of 0 on x and t may be incorporated with X -  (1  +a) t by a suitable 
rescaling. The present representation of the dominant waveband is more general 
therefore than that assumed in oblique wave-group solutions of the nonlinear 
Schrodinger equation, since it provides for nonlinear dependence of 0 on x-it cos8. 

Equation (3.4) may be solved numerically by a simplified version of the method 
described in $2. The Fourier-series expansion for R that is consistent with (3.5) with 
0 scaled to zero is 

where ak is symmetric about k = k ,  ( k ,  must be an integer here, since the non- 
dimensional wavelength is exactly 2n: when 0 = 0). When (3.6) is substituted into 
(3.4) the result may be .transformed numerically to 

(x-~tcos8)cos8 = 0, 
m I (3.7) 

where G, is symmetric about m = k,, and is a nonlinear function of ak and a for given 
6 ,  k ,  and 8. The Fourier transforms of the partial derivatives (i3G/aak)m, (aG/aa), 
are calculated, and Newton's method based on equations similar to (2.8) is used with 
the same procedure as was described in $ 2 .  All of the types of periodic solution derived 
by Hui & Hamilton (1979) have been calculated by this method. 

4. Critdcal angle and conjugate solutions 
The boundary wedge of the Kelvin ship-wave pattern is a caustic with oblique 

wave-group structure, according to the linear theory, for which the wave-crest to 
group-crest angle is the critical angle tan-'2/+, equal to 0.6155 or 35.3". The 
water-surface displacement on the boundary wedge dominates asymptotically the 
surface displacement within the wedge. The linear theory is summarized by Hui & 
Hamilton (1979, $4) and is illustrated by Lighthill (1978, figures 70, 71) .  

The nonlinear oblique wave-group solutions described in $ 2  were explored by 
changing 8 step by step with e and k, held constant. Solution branches followed in 
this way were liable to change either continuously or discontinuously to solution 
branches with the correct envelope velocity and correct wavelength in the y-direction, 
but with an incorrect wavelength in the x-direction, equivalent to an incorrect value 
of k,. This meant that the chosen scaling was incorrect, and that such solutions needed 
rescaling, as follows. 

If 2x1' denotes the correct typical wavelength of the wavetrain in its direction of 
propagation, and 8' is the correct angle bet.ween the propagation direction and the 
x-direction, the envelope velocity is 

i (g1 ) i  cos 8 = f(g1')i  cos 8' (4.1) 

in the x-direction, and the wavelength in the y-direction is 

2x1 2nl' 
sine sin8" 
-=- 
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Equation (2.3) becomes 
L cos 8’ k’ = ___ 

1’ ’ 

giving the correct number of wavelengths per group length in the x-direction. When 
the ratio I’ll is eliminated between (4.1) and (4.2), and the solution 8’ = 8 discarded, 
8 and 8’ are related by 

sin2 8+ sin 8‘ sin 8+ sin2 8‘ = 1 .  

Knowing that the critical angle is sinp1 44, (4.3) may be rewritten 

(4.3) 

(4.4) ( 1  - 3  sin2 8’) (3 sin2 8- 1 )  = (3 sin 8sin8’+ 2) (sin 8-sin O’)? 

The right-hand side of this equation is greater or equal to zero for 8 and 8’ both 
positive acute angles, and is equal to zero only when 

8 = 8’ = Sin-14;. 

Equation (4.4) shows that, if an oblique wave-group solution exists whose wave-crest 
to  group-crest angle satisfies sin0 > di, there is a conjugate oblique wave-group 
solution whose wave-crest to  group-crest angle satisfies sin 8’ < z /$ ,  and vice versa. 
The solution a t  the critical angle sin-’ 4; is conjugate to itself. Conjugate solutions 
have the same envelope velocity and the same wavelength transverse to the direction 
of the envelope velocity, but have different wavelengths along the direction of the 
envelope velocity. Their occurrence is discussed in $6 in the context of wave 
resonance. 

5. Two families of wave groups 
It was shown in 8 1 how a single-waveband model of a periodic wave group possesses 

two distinct forms, one in which the waves in each group are in phase with those in 
all other groups, and the other in which there is a phase difference of 7c between the 
waves in consecutive groups. This property may be generalized to the oblique wave 
groups described by (2.4). For the first family, k takes all integer values between the 
bounds k l ( j ) ,  k 2 ( j )  for each wavebandj, while, for the second family, k takes only 
integer values such that j + k is even. The second family for the simple model in 3 1 
was described by the dominant wavebandj = 1 with k taking odd values only. 

The oblique wave groups propagate in the x-direction with a dimensionless group 
length 2xko/cos8 equivalent to  a dimensional group length 2xL (equation 2.3). Both 
families of oblique wave groups (equation 2.4a) satisfy 

and the second family of wave groups satisfies 

(5.1 a) 

(5.1 b )  

Equation (5.1 b )  demonstrates that  the group length of the second family is xko/cos 8, 
equivalent to n L  in dimensional terms, since the envelope of the group is obtained 
by averaging 7 over y a t  fixed x and t (which is equivalent to averaging over y or 
t a t  fixed x-it cos 8). Equation (5.1 b )  demonstrates also that a t  given t the wavetrains 
in adjoining groups are IT out of phase, because x/sinB is half the dimensionless 
wavelength in the y-direction. Wavelength in the y-direction, unlike wavelength in 
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FIGURE 2. (a) One group length of the oblique wave group with parameters E = 0.05, k, = 10, 
6' = 0.5, of the first. family below the critical angle. Horizontal contraction 1On. ( b )  Envelope of 
the above group, which is almost identical with the corresponding envelope solution (dn form) of 
the nonlinear Schrodinger equation. 

the x-direction, remains constant as the wavetrain propagates through the periodic 
group structure. The difference in wave phase between consecutive groups of the 
second family may be seen in the crest lines of the example in figure 1 (a )  and less 
clearly in figure 3 (a). 

Periodic oblique wave-group solutions from the first family are found for wave to 
group angles 8 up to the critical angle tan-l di. Apparent numerical solutions exist 
for 8 greater than the critical angle, but because their central wavenumbers exceed 
k, by significant ratios, they need rescaling to interpret them correctly. Equation 
(4.4) shows that the rescaled wave-to-group angle, the actual angle made by the waves 
in these solutions, lies below the critical angle. Periodic wave-group solutions from 
the second family are found for wave-to-group angles 0 from 0 to in. The corresponding 
nonlinear Schrodinger envelope solutions have the same properties, with the elliptic 
dn solutions occurring only for angles less than the critical angle, but with the elliptic 
cn and sn solutions (with envelope zeros) occurring for all angles 8 from 0 to in. 

An example of an oblique wave group from the first family of wave groups is 
sketched in figure 2(a ) .  The parameter values are c = 0.05, k, = 10, 6 = 0.5, with 
a = 0.0006, and one group length is shown. No attempt is made to  give perspective 
to  the figure so that wave angles may be measured directly. The envelope of the group 
is drawn to the same scale in figure 2 ( b ) .  The envelope is almost identical with the 
corresponding elliptic dn solution of the nonlinear Schrodinger equation at these 
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FIGURE 3. (a )  Two group lengths of the oblique wave group with parameters B = 0.05, k, = 10, 
0 = 0.5, of the second family below the critical angle. Horizontal contraction lox. ( 6 )  Envelope 
of the above groups. Minimum separation of upper and lower envelopes is 0.062 of maximum 
separation. (c) Corresponding envelope solution (cn form) of the nonlinear SchrGdinger equation. 

parameter values (Hui & Hamilton 1979, figure 2 b ) .  The full solution (equations 2.4) 
contains 115 wave components (231 variables) in 7 wavebands 0 < j  < 6, the 
wavenumber range being 1 < k < 64. The maximum Fourier coefficients F,,, G,, 
not included in the calculation have magnitude 1 x lop6. The maximum magnitude 
of F and G over the 256 x 16 points used in the final calculation is 2.6 x with 
a root-mean-square deviation of F and G from zero of 5.5 x (A computer listing 
of the wave components for all examples may be obtained from the author). 

The equivalent example from the second family of wave groups, with a = 0.0005, 
is sketched in figure 3(a) .  Two group lengths are shown so that it may be seen how 
the waves in the two outer half-groups each differ by 7c from the waves in the centre 
group. The envelope of the group is drawn in figure 3 ( b ) ,  and the corresponding 
envelope solution of the nonlinear Schrodinger equation in figure 3(c) .  The two 
envelopes are almost identical except in the neighbourhood of the envelope zeros of 
the nonlinear Schrodinger equation, which in the actual envelope are replaced by 
upper and lower envelope extrema. The nonlinear-Schrodinger-equation solution has 
the elliptic en form (Hui & Hamilton 1979, figure 2 ( a ) ) .  
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0 . 5 ~  0 0.2 0.4 tan-' 0.6 d+ 0.8 1.0 1.2 1.4 1.6 

e 
FIGURE 4. Wavenumber ratio for resonance in the dominant waveband. 

An example of an oblique wave group of the second family for which the 
wave-to-group angle 0 exceeds the critical angle was sketched in figure l ( u ) ,  with 
garameter values 6 = 0.05, k, = 10, 6' = and a! = 0.0013. The envelope of the 
group and the corresponding envelope solutions of the nonlinear Schrodinger 
equation are sketched in figures l ( b , c )  respectively, and differ only where the 
envelope zeros are replaced by envelope extrema in the actual wave envelope. The 
nonlinear Schrodinger equation solution has the elliptic sn form (Hui & Hamilton 
1979, figure 3a) .  

6. Resonance 
The nonlinear Schrodinger equation is valid only if the dominant wave components 

lie in a narrow waveband in two-dimensional wavenumber space. When an oblique 
wave group has another major peak in wavenumber space, the nonlinear Schrodinger 
equation fails as a model of the group. A second spectral peak can be expected to 
occur if a forced or bound wave component of significant magnitude has the same 
frequency-to-wavenumber relation as do free gravity waves in deep water. This form 
of resonance is distinct from resonant instabilities of oblique wave-group solutions 
of the nonlinear Schrodinger equation, because it is a significant resonant contribution 
to the structure of the oblique wave group itself. When it is present, the nonlinear 
Schrodinger equation, and perturbations to it,  are no longer valid models of the 
modified oblique wave groups and their stability. 

The wavenumber and frequency of one of the forced wave components in the 
oblique wave group represented by ( 2 . 4 ~ )  satisfy the linear dispersion relation for 
deep-water gravity waves when 

The values of k/ko  given by this equation are plotted as st function of 6' for the 
dominant waveband j = 1 in figure 4. The frequency correction a! makes little 
contribution to these curves, the points being calculated for oblique wave groups with 
6 = 0.05, k, = 10, when a takes values between 0.0004 and 0.0014 over the range of 
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FIGURE 5.  Resonant behaviour of the wave amplitudes al, 6 ,  u1,, for oblique wave 
groups of the first family with e = 0.05, k, = 10. 

8 shown. Resonances in other wavebands ( j  = 0,2,3,  .. .) do not occur for values of 
klk, a t  which wave components contribute to the oblique wave-group structure. 

The points on the resonance curves corresponding to integer values of k indicate 
values of 8 near which oblique wave groups are modified or may not exist because 
of the resonant generation of one of their wave components. As 8 approaches such 
a value, the resonating wave component increases in magnitude relative to the other 
wave components, and as the value is crossed the wave component and the Jacobian 
in Newton’s method change sign. This effect is slight for small or large values of klk,, 
but for klk, near 1 the effect becomes significant. The curve in figure 4 indicates that, 
if k, is 10, ul, is resonant a t  8 = 0.553 and ul, is resonant a t  8 = 0.592. 

The amplitudes ul, 6 ,  ul, for oblique wave groups of the first family are sketched 
in figure 5 as functions of 8 for a range including resonance. No solutions for oblique 
wave groups could be found when 0.550 < 8 < 0.555, where u1,6 is resonant. As 8 
approaches 0.550 from below, the spectral peaks a t  ( j  = 1, k = 6) and ( j  = 1, 
k = k, = 10) are of equal magnitude a t  8 = 0.544, and the resonant peak exceeds the 
central peak for 0.544 < 8 d 0.550. The amplitude al, a t  8 = 0.550 has a magnitude 
5 times that of the central amplitude ul, The actual envelope of the oblique wave 
group a t  8 = 0.555, on the upper side of the resonance of ul, 6 ,  is compared in figure 6 
with the corresponding envelope solution of the nonlinear Schrodinger equation. 
The figure illustrates the modification to  the envelope shape which is caused by the 
resonating wave component. The amplitude ul, rises more strongly towards resonance 
than does ul, 6 ,  with the resonant peak a t  ( j  = 1 ,  k = 7) exceeding the central peak 
for 0.572 < 8 6 0.596. The amplitude ul, a t  8 = 0.596 has a magnitude 32 times that 
of the central amplitude ul, No solutions could be found for 0.596 < 8 d 0.598. 
Nonlinear modification due to  the large amplitude is the probable reason for this 
discontinuity in ul, occurring beyond the value of linear resonance deduced from 
(6.1). 

The amplitude u1,7 for oblique wave groups of the second family is sketched in 
figure 7 as a function of 8 for the same range as in figure 5 (the amplitude u1,6 is 
zero for oblique wave groups of the second family). The upper curve describes the 
approach to resonance from below on a solution branch which began at 8 = 0. The 
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FIGURE 6. (a )  Envelope of the oblique wave group with parameters E = 0.05, k, = 10, 0 = 0.555, 
of the first family. Minimum separation of upper and lower envelopes is 0.016 of maximum 
separation. Horizontal contraction 1 b .  ( b )  Corresponding envelope solution (dn form) of the 
nonlinear Schrodinger equation. 

1-00 I I I I 1 I I I (  

FIGURE 7 .  Resonant behaviour of the wave amplitude al ,  for oblique wave groups of the 
second family with B = 0.05, k ,  = 10. 

resonant peak a t  ( j  = 1, k = 7) exceeds the two central peaks ( j  = 1, k = 9 and 11) 
for 0.566 < I9 < 0.595. The amplitude ul, ,  at 8 = 0.595 has a magnitude 10 times 
greater than either of the two central amplitudes u1,$ or ul,ll. The lower curve, if 
continued beyond the figure for values o f 8  above the critical angle, may be followed 
to I9 = 0.707, where i t  terminates because the amplitude u1,15 reaches a positive 
resonance maximum. As 8 is decreased below the critical angle, the lower curve 
describes the approach of the amplitude ul, , towards resonance from above. It then 
merges continuously into a curve for a solution branch dominated by ul, and ul, 11, 

which is better interpreted in terms of its conjugate branch at angles above the critical 
angle ($4). The oblique wave-group solution with ul , ,  on the lower curve a t  8 = 0.53, 
with c = 0.05, k,  = 10, for example, is conjugate to one a t  I9 = 0.70 with E = 0.4, 
k, = 6.92. Reference to figure 4 shows that there are three values for linear resonance 
a t  I9 = 0.70, namely k / k ,  = 0.8, 1.4 or 1.6, equivalent to k = 5.5, 9.7 or 11.1 when 
k ,  = 6.92. A better interpretation of the numerical solution at 8 = 0.53 on the lower 
curve of figure 7 is that the actual solution has a wave-to-group angle 8 = 0.70 
corresponding to a central peak near (j  = 1, k = k, = 7) and a resonant peak near 
( j  = 1, k = 11). 
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FIGURE 8. (a) One group length of the oblique wave group with parameters c = 0.05, k, = 10, 
0 = tan-l l/$ of the first family at the critical angle. Horizontal contraction 1 0 ~ .  (b) Envelope of 
the above group. Minimum separation of upper and lower envelopes is 0.154 of maximum 
separation. 

The multiple linear resonances near I3 = 0.7 in figure 4 have no relevance to oblique 
wave groups of the first family, since these groups do not exist for angles greater than 
the critical angle. They are relevant to the second family, and produce multiple 
solution branches. A t  I3 = 0.68, for instance, three distinct solution branches have 
been found, each of which displays resonant behaviour of different sets of wave 
components. The amplitudes al, 11, al, 13, al, 15, al ,  17 all pass through resonance near 
I3 = 0.68 in oblique wave groups for which k, = 10. The occurrence of multiple oblique 
wave-group solutions with steady envelopes for wave-to-group angles near I3 = 0.7 
suggests that it may be difficult to generate or observe isolated periodic oblique wave 
groups with steady envelopes near this angle. It is expected rather that the envelopes 
of the oblique wave groups remain unsteady with a continuing interchange of energy 
between resonating wave components. 

7. Oblique wave groups at the critical angle 
Oblique wave-group solutions of the nonlinear Schrodinger equation have perma- 

nent envelopes which satisfy (3.4), an equation which is singular a t  the critical angle 
I3 = tan-l di = 0.6155. Hui & Hamilton (1979) found oblique wave-group solutions 
of the nonlinear Schrodinger equation a t  the critical angle for which the envelope of 
the wave group is arbitrary. These solutions satisfy locally the nonlinear dispersion 
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FIGURE 9. (a )  Two group lengths of the oblique wave group with parameters E = 0.05, k, = 10, 
0 = tan-’ di of the second family at the critical angle. Horizontal contraction 1On. ( b )  Envelope 
of the above groups. Minimum separation of upper and lower envelopes is 0.136 of maximum 
separation. 

relation for a Stokes wavetrain. I n  contrast, the oblique wave groups calculated by 
the present method as solutions of equations (2.1) a t  the critical angle have the same 
form as oblique wave groups near the critical angle. Resonating wave components 
contribute significantly to the oblique wave-group structure in all examples calcu- 
lated a t  or near the critical angle, implying that the nonlinear Schrodinger equation 
is not a valid model for oblique wave groups in this region. 

An oblique wave group of the first family a t  the critical angle is sketched in figure 
S ( a ) ,  and its envelope is drawn to the same scale in figure S ( b ) .  The parameters are 
E = 0.05, Ic, = 10, 0 = tanp1 di, with a = 0.0008. The wave components with 
magnitudes exceeding loT4 are tabulated in the Appendix. The spectrum of the group 
has two equal peaks a t  ( j  = 1, k = 8) and ( j  = 1, k = 11). The existence of two equal 
peaks in the spectrum confirms that the nonlinear Schrodinger equation is not a valid 
model equation here. The sketch of the oblique wave group in figure 8 (a)  shows eight 
wavelengths per group length in the x-direction across the complete group length, 
consistent with the resonance associated with the first spectral peak. The solution 
contains 145 harmonics (291 variables) in 7 wavebands 0 < j  < 6, the wavenumber 
range being 1 6 k < 67. The maximum Fourier coefficients Fmn, G,, not included 
have magnitude 1 x lop6, the maximum magnitude of F and G over the 256 x 16 points 
used in the final calculation is 3.0 x with a root-mean-square deviation of F and 
G from zero of 6.0 x 

An oblique wave group of the second family a t  the critical angle is sketched in 
figure 9(a) ,  and its envelope in figure 9(b). The parameters are E = 0.05, k, = 10, 
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FIGURE 10. (a) Central fifth of one group length of the oblique wave group with parameters E = 0.05, 
k, = 50, 0 = 0.5, of the first family. Horizontal contraction lor. (b) Envelope of the above part 
of the group, which is almost identical with the corresponding envelope solution (sech form) of the 
nonlinear Schrodinger equation. 

8 = tan-' di, with 01 = 0.0009. The wave components with magnitudes exceeding 
lop4 are tabulated in the Appendix. The amplitude al,  , in this example is found on 
the lower curve of figure 7 a t  the critical angle. The amplitude al, 11 has a magnitude 
1.5 times the other central amplitude a l ,9  because this wave component lies near 
resonance (figure 4) at the critical angle. Nearness to resonance on the upper curve 
of figure 4 dominates nearness to resonance on the lower curve of figure 4 for this 
part of the solution branch. 

8. Solitary oblique wave groups 
The nonlinear Schrodinger equation has two solutions describing solitary oblique 

wave groups of permanent envelope. These are the envelopes of sech shape and of 
tanh shape (Hui & Hamilton 1979, figures Z c ,  3 b ) .  The envelope of sech shape occurs 
in the large group-length to wavelength limit for periodic oblique wave groups with 
wave-to-group angles less than the critical angle. At finite group lengths for angles 
in this region, the dn envelope solutions do not have envelope zeros, while the en 
solutions do have envelope zeros with a phase discontinuity of n a t  each zero. The 
limiting processes differ therefore for the two types of solution. This difference is 
reflected in the two families of periodic oblique wave groups calculated by the present 
method. The envelopes of the two families a t  wave to  group angles less than the 
critical angle tend to the same form unless resonating wave components are 
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FIGURE 1 1 .  (a )  One fifth of one group length of the oblique wave group with parameters E = 0.05, 
k, = 100, 0 = in, of the second family. Horizontal contraction lox. (b )  Envelope of the above part 
of the group. Minimum separation of upper and lower envelopes is 0.208 of maximum separation. 
( c )  Corresponding envelope solution (tanh form) of the nonlinear Schrodinger equation. 

significant. However, in the limiting process, the waves in each group are in phase 
for the first family, but the waves in consecutive groups are 7c out of phase for the 
second family. The envelope of tanh shape occurs in the large group-length to 
wavelength limit with wave to group angles greater than the critical angle. 

The central ten wavelengths of the oblique wave group with parameters E = 0.05, 
k, = 50,B = 0.5, a = 0.0006 are sketched in figure 10 (a ) ,  and the envelope of this part 
of the group is drawn in figure 10 (b) .  The group length is completed by 20 wavelengths 
of nearly zero wave height on each side of the part shown. The amplitudes al ,  21, ul, 22 

have small resonant peaks, with phases such that ul, 21 is negative and ul, 22 is positive, 
corresponding to the linear resonance for the angle 0 = 0.5 (figure 4) at k / k o  = 4.20, 
equivalent to k = 21 with k, = 50. This resonance is sufficiently small that the 
envelope of the group in figure 10 (b )  almost coincides with the corresponding envelope 
solution of the nonlinear Schrodinger equation. 

Attention is drawn to the close resemblance between figures 2 and 10. The complete 
group length illustrated in figure 2 is almost identical with the partial group length 
at the same wave-to-group angle illustrated in figure 10. 

Ten wavelengths of the oblique wave group with parameters E = 0.05, k, = 100, 
0 = $, a = 0.0012 are sketched in figure 11 ( a ) ,  the envelope of this part of the group 
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is drawn in figure 1 1  ( b ) ,  and the part of the corresponding envelope solution of the 
nonlinear Schrodinger equation is drawn in figure 11 (c). One tenth of the double group 
length centred on either of the two envelope minima (see figure 1) is shown in 
figure 11,  with ten wavelengths included. The remainder of the group consists of 20 
wavelengths of uniform wave height on each side of the part shown in the figure. This 
form of solitary wave group solution of the nonlinear Schrodinger equation is referred 
to as the dark soliton by Peregrine (1983) and others. The linear resonance a t  0 = fn 
(figure 4) contributes to the amplitudes of the two central wave components al,  and 
al, l l .  It may be seen on comparing figures 11 ( b )  and 11 (c) how the zero of the 
nonlinear Schrodinger envelope solution is replaced by upper and lower envelope 
extrema in the actual oblique wave group. 

9. Discussion 
There are two points of wider interest in the present calculations of periodic oblique 

wave groups of permanent envelope. These concern the role of resonant interactions 
between wave components, and the absence of envelope zeros in the calculated wave 
groups. 

A deficiency has been confirmed in the applicability of the nonlinear Schrodinger 
equation to slowly varying water-wave motion in two horizontal dimensions. The 
problem lies with the assumption in this equation that the water wave spectrum has 
a narrow peak in two-dimensional wavenumber space. The possibility exists that the 
resonant forcing of certain wave components in two horizontal dimensions generates 
further spectral peaks, a property demonstrated originally by Phillips ( 1960). 
Solutions calculated from the nonlinear Schrodinger equation which are to be applied 
to water-wave motion must be tested to determine whether any of the significant 
wave components in the solution satisfy the linear dispersion relation. If there are 
wave components with this property, such a solution may be modified significantly 
by resonating wave components. 

The nonlinear Schrodinger equation has solutions with envelope zeros (Hui & 
Hamilton 1979, Peregrine 1983). An envelope zero introduces an additional zero into 
the slowly varying wavetrain, which changes locally the horizontal lengthscales and 
raises doubts about the local applicability of the nonlinear Schrodinger equation. 
It is therefore of interest that the envelope zeros in oblique wave-group solutions of 
the nonlinear Schrodinger equation are replaced by positive minimum envelope 
separations in all oblique wave groups calculated here, with no additional zeros in 
the wavetrain. Recent measurements by Melville (1983) show that rapid variations 
in wave phase occur near the minima of wave amplitude in an evolving slowly varying 
Stokes wavetrain. Melville’s observations were made a t  larger wave slopes 
(0.23 < E < 0.29) than that used here ( E  = 0.05), with an envelope that is unsteady, 
and are therefore not inconsistent with the properties calculated here. 

This investigation has demonstrated a straightforward method for the numerical 
calculation of solutions of the equations for irrotational gravity wave motion in deep 
water. The method has generalizations to water of finite depth, to short waves with 
significant surface tension, and to other forms of water-wave motion. Properties are 
found for the full nonlinear theory without recourse to model nonlinear equations 
such as the Schrodinger equation or the Zakharov equation, or to perturbation 
expansions in the wave-slope parameter. 
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Appendix 

example of the first family whose wave-to-group angle is the critical angle ($7 )  : 
Wave components with magnitudes exceeding lop4 for the oblique wave-group 

- 0.0002 

-0.0002 
0.1527 
0.0002 

-0.0008 
0.0031 

0.0001 

-0.0058 

-0.0002 
0.1432 
0.0002 

- 
- 

- 

-0.0003 

-0.0016 
0.0871 

0.0002 
0.0024 

0.0001 

-0.0049 

-0.0018 
0.0793 

- 

- 

- 

-0.0003 

- 0.0097 
0.0427 

0.0007 
0.0016 

0.0001 

-0.0034 

-0.0112 
0.0377 

- 

- 

- 

ai k 

j = 0, k = 1-7 
-0.0002 -0.0001 - 

j = l , k = 4 - 2 0  
-0.0922 0.2072 0.1639 

0.0194 0.0084 0.0035 

j = 2, k = 15-29 
0.0016 0.0028 0.0037 
0.0010 0.0006 0.0003 

j = 3, k = 3&34 
0.0001 0.0001 

4, 
j = 0, k = 1-7 

-0.0019 -0.0008 -0.0003 

j = 1, k = 4-20 
-0.1023 0.2219 0.1696 

0.0167 0.0070 0.0028 

j = 2, k = 15-29 
- - - 

j = 2, k = 3&34 
- - 

- 

0.191 1 
0.0014 

0.0040 
0.0002 

-0.0001 

0.1911 
0.001 1 

- 

- 

0.2001 
0.0006 

0.0037 

0.1936 
0.0004 

- 

- 

Wave components with magnitudes exceeding lop4 for the oblique wave-group 
example of the second family whose wave-to-group angle is the critical angle ( $ 7 ) :  

-0.0007 -0.0003 - 

0.0002 0.0017 -0.1 149 
0.0054 0.0003 

0.0003 -0.0015 -0.0001 
0.0008 0.0002 

0.0002 0.0003 0.0003 

-0.0110 -0.0022 0.0002 

0.0002 0.0021 -0.1275 
0.0044 0.0003 

'jk 
j = 0, k = 2-8 even 
- 

j = 1, k = 3-19 odd 
0.3198 0.4911 0.2263 

j = 2, k = 14-30 even 
0.0066 0.0100 0.0071 

j = 3, k = 31-37 odd 
0.0002 

' f k  
j = 0, k = 2-8 even 

0.0001 

j = 1, k = 3-19 odd 
0.3307 0.4751 0.2058 

0.0438 

0.0029 

0.0377 
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The complete listing of the wave components for these and the other examples may 
be obtained from the author. 
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